Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 18(8): 4865-4878, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35895330

RESUMO

Mechanochemical simulations of actomyosin networks are traditionally based on one-dimensional models of actin filaments having zero width. Here, and in the follow up paper (arXiv, DOI 10.48550/arXiv.2203.01284), approaches are presented for more efficient modeling that incorporates stretching, shearing, and twisting of actin filaments. Our modeling of a semiflexible filament with a small but finite width is based on the Cosserat theory of elastic rods, which allows for six degrees of freedom at every point on the filament's backbone. In the variational models presented in this paper, a small and discrete set of parameters is used to describe a smooth filament shape having all degrees of freedom allowed in the Cosserat theory. Two main approaches are introduced: one where polynomial spline functions describe the filament's configuration, and one in which geodesic curves in the space of the configurational degrees of freedom are used. We find that in the latter representation the strain energy function can be calculated without resorting to a small-angle expansion, so it can describe arbitrarily large filament deformations without systematic error. These approaches are validated by a dynamical model of a Cosserat filament, which can be further extended by using multiresolution methods to allow more detailed monomer-based resolution in certain parts of the actin filament, as introduced in the follow up paper. The presented framework is illustrated by showing how torsional compliance in a finite-width filament can induce broken chiral symmetry in the structure of a cross-linked bundle.


Assuntos
Citoesqueleto de Actina , Actinas , Citoesqueleto de Actina/química , Actinas/química
2.
Interface Focus ; 9(3): 20180070, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31065341

RESUMO

This work investigates multi-resolution methodologies for simulating dimer models. The solvent particles which make up the heat bath interact with the monomers of the dimer either through direct collisions (short-range) or through harmonic springs (long-range). Two types of multi-resolution methodologies are considered in detail: (a) describing parts of the solvent far away from the dimer by a coarser approach; (b) describing each monomer of the dimer by using a model with different level of resolution. These methodologies are then used to investigate the effect of a shared heat bath versus two uncoupled heat baths, one for each monomer. Furthermore, the validity of the multi-resolution methods is discussed by comparison to dynamics of macroscopic Langevin equations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...